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Abstract
We present a time evolving path-integral method for solving the Landau–
Fokker–Planck equation to compute kinetic transport coefficients in a fully
ionized plasma. The electron distribution function is advanced in time
by means of the conservative short-time propagators, which we previously
obtained. The validated integral operator takes into account both electron–
electron and electron–ion collisions without linearizing the original Fokker–
Planck collisional operator. The resulting integral formulation in velocity space
is applied here to evaluate the local transport coefficients if inhomogeneities in
configuration space appear. We define an effective source term through a flux
particle balance in a thin slab of plasma, which leads to a nonhomogeneous
Fokker–Planck equation. Hence, this new term locally models the so-called
Vlasov term appearing in the general kinetic equation. Arbitrary departures
from Maxwellian equilibrium can be dealt with this effective source term that
preserves the positiveness of the electron distribution function, even in the
runaway limit. For small perturbations of the equilibrium, the classical Spitzer
and Harm transport coefficients are recovered, while a very strong reduction of
the heat flux takes place for large temperature gradients, as predicted by some
authors in different theories.

PACS numbers: 02.70.Rw, 52.65.Ff, 31.15.Kb, 52.20.−j, 51.10.+y, 02.70.Rr

1. Introduction

The Fokker–Planck equation plays a fundamental role in the description of collisional plasmas
ranging over a wide class of realistic scenarios, from astrophysics to inertial confinement
systems, see, for instance, the exhaustive and amenable review [1] . Moreover, this equation
also appears in many branches of physics in relation to a wide class of phenomena [2, 3].
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Many attempts have been devoted to properly study the nature of solutions for this nonlinear
integro-differential equation in plasmas, as well as to solve it, using analytical approaches or
numerical methods.

The semi-analytical solutions are always obtained under fair approximations of the
original Fokker–Planck equation (FPE), in most cases after having proceeded by the
linearization of the full nonlinear operator. Further simplifications are related to some scale
properties of the system under inspection, in order to get a more manageable collisional
term.

On the other hand, the design of specialized numerical methods on solving both,
full and simplified Fokker–Planck equations, has attracted great attention in the last two
decades. The matter of constructing feasible numerical methods is still a subject of
continuous investigation because any numerical algorithm should be coherent with the
main characteristic properties of the collisional operator, such as conservation properties
and the kinetic entropy production. Conservative and entropic numerical schemes [4–7]
are important in order to compute macroscopic properties of the plasma fluid, such as the
so-called transport coefficients [8–10]. In most cases, numerical computation is required,
even if the electron distribution function fe is approximated up to first order in any kind
of expansion and the collision operator is linearized. One of the most useful linearization
procedures, apart from the drastic simplification introduced in the Bhatnagar–Gross–Krook
operator [11, 12], is the well-known Chapman–Enskog expansion [13, 14], which was applied
by Spitzer and Harm to perform one of the most discussed evaluations of typical transport
coefficients [8].

Another widely extended method consists in using Laguerre polynomial or cartesian
tensor expansions for fe, as in the calculation done by Epperlein and Haines in [15]. In all
cases, the collision operator is linearized and the distribution function expansion is cut off
after a few number of terms, even for new interesting numerical approaches as that proposed
in [16]. This series truncation may lead to the unphysical description of fe, in the sense that
the electron population is not well described in the range of high velocities. Consequently,
in order to find a feasible description of both slow and fast electrons’ populations, it would
be desirable to deal with the full nonlinear nature of the collision operator. This is an
important task in numerical computation, since fast electrons have long mean free path
exceeding the characteristic length of temperature and density gradients, modifying heat
and current flows. In this sense, a low density of suprathermal or runaway electrons in
presence of an electric field can dominate transport, which becomes non-local, and it may be
responsible for some other important effects, as magnetic field generation inside the plasma
[17].

In a previous paper [18], we gave a procedure to numerically solve the nonlinear FPE in
a fully ionized collisional plasma, thanks to the construction of a suitable short-time integral
propagator. This propagator plays the role of an effective integral collision operator in velocity
space, enabling a way to implement in time the distribution function through a path-integral
formalism [2, 19–22]. In a different frame, the path-integral method in statistical physics had
already been related, among others, to plasma theory by Dagan and Hortwitz in [23] and,
previously by Chandrasekhar [24], being a pioneer in dealing with the dynamics of particles
under deterministic and stochastic forces. We, firstly, applied the path-sum method to the
plasma FPE in our earliest work [25]. More recently, other authors, as Bizarro et al in [26]
have applied the path-sum approach to the same problem, but using the common Gaussian
propagator. Although our improved propagator was derived for the homogeneous equation,
assuming a spatially independent distribution function, this integral method can be easily
extended to solve the nonhomogeneous equation when spatial dependence or source terms
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appear under a more general formulation of the FPE. We remark that the nonunique form
of the propagator [20, 21] enables us to recalculate it in such a way that all conservative
properties of the integro-differential operator are preserved. In this sense, all the information
to describe the interactions between charged particles is obtained from the collisional integro-
differential equation, using the drift and diffusion coefficients defined for it. Hence, no
linearization of the collisional operator is used, in the sense that, at any time step, the
propagator is recomputed using the full distribution function, from which we get the new
coefficients. Roughly speaking, the new integral collision operator works in the short-time
regime as an exact one, since the diffusion coefficients in a fully ionized plasma vary slowly
in time.

As it is well known, the main task in kinetic plasma theory is to provide correct
values for the so-called transport coefficients appearing in the fluid description of plasmas.
Thus, as an application of our numerical integral method, we reproduced in [18] the
values of the classical transport coefficients derived by Spitzer and Harm in [8] for very
small (electric and temperature gradient) perturbative fields. However, even with the same
equation used in the Spitzer–Harm problem, except, of course, for the collisional term,
deviations from classical values appear when the perturbation from equilibrium begins to
grow. The meaning of these deviations was analysed and justified by the use made of a
formal nonhomogeneous term, termed in [18] as ρspt, taken from the classical calculations,
although we used the full nonlinearized collisional operator. We have found that the negative
values in the tails of fe are very similar to those in the classical Spitzer–Harm calculation.
Therefore, nothing significantly new came out of our previous analysis, except, of course,
the practical validation of a very different time evolving method to compute the local
transport coefficients. It, therefore makes little sense to use this term in a full nonlinear
formulation of the problem, that has to be undertaken in a new approach as that we are giving
here.

Our main aim in the present paper is to go beyond the limits imposed by the linearization
method. The strongest argument to abandon the frame in which the results of [18] were
obtained is, thus, the merging of negative amplitudes for large values of |v| and the electric
field strength |E|. The reason for the failure of such a basic principle as the positiveness of
the distribution function, is no other than the polynomial approximations contained in the
nonhomogeneous term as a function of the temperature gradient ∇T and E, as well as the use
of the truncated expansion of fe in [8]. Moreover, as we shall see, if E is omitted from ρspt

and it is included in the advance scheme as a convective term, the same nonphysical behaviour
in fe is observed. Then, if we intend to develop a realistic fully nonlinear model to evaluate
the transport processes, we are forced to abandon the formal source ρspt (or any similar one
coming from linearized schemes) and to construct an alternative physically meaningful term
having similar properties. At the same time, however, this term must be constructed using
no approximation either for the distribution fe or for the collisional operator in the Fokker–
Planck–Landau form, taking into account that classical Coulomb collisions are dominant in
thermal heat flux [27–29]. Yet, working under the perspective of local transport calculus, our
effective source term ρ is proposed under a clear physical sense, following the idea pointed
out by Soler in [18], through a particle flux balance on the surface of a small volume in
configuration space. In this sense, the proposed ρ locally models the so-called Vlasov term
of a more general plasma kinetic equations. The new source term provides the same results
obtained with ρspt for very small deviations from the Maxwellian thermodynamic equilibrium,
but it allows the analysis of increasing departures from this state. We have found significant
flux inhibition for large electric field and/or steep gradients, as predicted by some authors
[30–32].
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2. Integral collision operator in velocity space

Under a quite general formulation, the nonhomogeneous Fokker–Planck equation in kinetic
theory

∂f

∂t
= LFP (q, t)f (q, t) + ρ(q, t) = − ∂

∂qi

[
Ai (q, t) − ∂

∂qj

Dij (q, t)

]
f + ρ(q, t) (1)

describes the time evolution of a distribution function f (q, t), depending on time and the
six variables q of the vector {r, v} for a point in the phase space. The term ρ is understood
as a source term . The components Ai of the drift vector A, as well as the diffusion tensor
elements Dij and ρ, may also depend on f, as in the case of the Fokker–Planck equation in
plasma physics. In this case, we shall refer to the above equation as a nonlinear FPE as in the
interesting book [3].

The above equation also describes the evolution of a propagator or Green function
�(q, t | q′, t ′) that satisfies the same equation with an impulsive source ρ = δ(q−q′)δ(t − t ′)
at time t ′ . If this propagator can be found, the solution for f is given by the time integral
evolution as

f (q, t) =
∫

f (q′, t ′)�(q, t | q′, t ′) dq′ +
∫

dq′
∫ t

t ′
ρ(q′, τ )�(q, t | q′, τ ) dτ. (2)

This integral equation exhibits a clear probabilistic meaning when � is understood as a
transition probability from a source point q′ at time t ′ to a field point q at time t > t ′,
although, in general, � may not have this probability sense [33]. In most cases, the
differential equation for the propagator � cannot be solved if the same equation for f is not
solvable. Fortunately, it is possible sometimes to obtain an approximate nonunique propagator
Pτ (q, t + τ ; q′, t) ≈ �(q, t + τ ; q′, t), only valid in the short-time regime of the evolution.
Such a short-time propagator can be found by several methods, such as the construction of an
auxiliary solvable Fokker–Planck equation, as we suggested in [34]. A well-known short-time
propagator for the transition from time t ′ = t to time t + τ is the Gaussian distribution [2, 26],
which in N-dimensional space reads

Pτ (q, t + τ ; q′, t) = exp
[−D′−1

ij UiUj/4τ
]

‖D′‖1/2(4πτ)N/2
(3)

for a nonsingular diffusion tensor, ‖D‖ �= 0. Here, we have defined the vector
U = q − q′ − A′τ . In (3) primes indicate that the corresponding functions are evaluated in
source points (pre-points) q′ at time t, instead of being computed at field points (post-points) q.

Our present work deals with solving the plasma physics Fokker–Planck equation for the
evolution of the electron distribution function fe

∂fe

∂t
= − ∂

∂r
· vfe − ∂

∂v
· F
me

fe + C(fe, fe), (4)

where F is the external force, (∂/∂r) · vfe is usually called the Vlasov term, describing
spatially inhomogeneities effects on fe = fe(r, v, t). In the following, we drop the argument
r in the notation of fe and other functions derived from it. The integro-differential operator
C = Ce/e + Ce/i is the collision term, that acts on velocity variables and can be written as

C(fe, fe) = LFP fe = − ∂

∂v
·
[

De(v, t) − ∂

∂v
· D

e(v, t)

]
fe(v, t). (5)

The drift vector De and the diffusion tensor D
e components include themselves the

contribution of the electron–electron and electron–ion collisions through the additive relation
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De = De/e + De/i . These coefficients can be computed using Trubnikov’s Rosenbluth-like
(anisotropic) potentials [5, 10]

ψb(v, t) = − 1

8π

∫
|v − v′|fb(v′, t) dv′, ϕb(v, t) = − 1

4π

∫
fb(v′, t)
|v − v′| dv′, (6)

for electron test particle (e) in a medium of particles of species b (here b = e, i) as

De/b
α = −Le/b

(
1 +

me

mb

)
∂ϕb

∂vα

, D
e/b

αβ = −Le/b ∂2ψb

∂vα∂vβ

. (7)

Here, the standard notation [10] is followed by all physical quantities. For the absolute
elementary charge e and masses mb, one has Le/e = λ16π2e4

/
m2

e , Le/i = Z2Le/e if Z is the
relative ionic charge and λ is the Coulomb logarithm [10], taken as a constant. In this work,
we assume the ions at rest in the lab frame and distributed in velocities according to a Dirac δ

function, with density ni = ne/Z for plasma neutrality, as fi = niδ(v).
The term F usually refers to the Lorentz force −e[E + v×B], which can be directly added

to the drift vector in the collisional operator if the electric and magnetic fields E and B do
not explicitly depend on v. The resulting FPE has the general form given by (1) with a drift
vector A = {v, De + F/me} and a singular symmetrical diffusion tensor with zero components
for Dvixj

and Dxixj
. In this sense, one must observe that the short-time propagator (3) is not

valid to provide an advancing scheme for the present problem. Otherwise, if it is possible
to derive such a suitable propagator, this would operate in a six-dimensional space, making
the computational effort to be rather cumbersome, and almost impossible without further
simplifications. This is why we propose here a simple model, in order to locally describe
the collisional plasma, without inserting explicitly the divergence of flux particle in a spatial
point (∂/∂r) · vfe or the Vlasov term, as we shall indicate in the following sections. We adopt
here the advancing scheme based on splitting the collisional operator into two parts, due to
electron–electron and electron–ion interactions.

As in [5], we use a cylindrical coordinates representation of the equation, assuming fe as
depending on both axial and radial velocity components v‖ = vz and v2

⊥ = v2
x + v2

y , parallel
and perpendicular to an externally applied field. The cylindrical coordinates (v⊥, v‖, φ) are
defined in terms of the spherical ones (v, θ, φ) as usual v⊥ = v sin θ , and v‖ = v cos θ . In these
coordinates a FPE depending only on velocity variables, with an operator in the form of (5),
is transformed into the new FPE
∂f ∗

∂t
= −

[
∂

∂v⊥

(
D∗

⊥ − ∂

∂v‖
D⊥‖ − ∂

∂v⊥
D⊥⊥

)
+

∂

∂v‖

(
D‖ − ∂

∂v⊥
D⊥‖ − ∂

∂v‖
D‖‖

)]
f ∗ (8)

for the new function f ∗ defined as f ∗(v⊥, v‖; t) = 2πv⊥fe(v; t) and D∗
⊥ = Dφφ/v⊥

+D⊥, where all the coefficients refer to the electron–electron collisions, satisfying (7) for
(α, β) = (⊥, ‖) and Dφφ = −Le/e(∂ψe/∂v⊥)/v⊥. In order to simplify the final form of
the short-time propagator, the drift vector components can be redefined in terms of two new
effective coefficients A through the relations

Dφφ

v⊥
+ D⊥ = D⊥⊥

v⊥
+ A⊥ and D‖ = D⊥‖

v⊥
+ A‖. (9)

Thus, fe can be implemented in the short-time regime of evolution by means of the approximate
Green’s function Pτ (v, v′|t) , given by

Pτ = v⊥
i0(2v⊥(v⊥ − U)/(4D′

⊥⊥τ))

2τ
√

4πD′
⊥⊥τD′

t

exp

[
−D′

‖‖U
2 − 2D′

⊥‖UV + D′
⊥⊥V 2

4τD′
t

]
, (10)

which was derived and tested in our previous work [18]. Here U = v⊥ − v′
⊥ − A′

⊥τ and
V = v‖ − v′

‖ − A′
‖τ − F ′

‖τ/me, where we have added the parallel force F‖ (in the following,
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−eE/me) due to an externally applied field. Dt denotes the determinant of the 2×2 nonsingular
cylindrical diffusion matrix associated with the formal vector {v⊥, v‖}. Primes here indicate
that the coefficients have to be computed in the pre-point variables v′ in time t. The continuous
bounded function i0 is related to the zero-order modified Bessel function of the first kind I0

as i0(q) = I0(q) exp(−q). It is important to realize that (10) is suitable for any operator that
can be cast into the form of (8) as, for instance, in dealing with the interaction of plasma
and radio-frequency waves [5], relativistic plasmas [35] and generalized collision operators
as in partially degenerate plasmas [36]. As said before, without loss of generality, the ions
are assumed to be at rest, being the Rosenbluth-like potentials describing the contribution of
the ions to the collision operator ψi = −niL

e/iv/8π and ϕi = −niL
e/i/4πv. Otherwise, if

the ions move at constant flow velocity ui , it is sufficient to simply translate the v argument
of fe into v − ui . The resulting operator describing the electron–ion interaction, denoted by
(∂f/∂t)i as usual, has the form of (5) with drift and diffusion coefficients given by the relations

D
e/i

i (v) = −
(

1 +
me

mi

)
niL

e/i

4π

vi

v3
and D

e/i

ij (v) = niL
e/i

8π

δij v
2 − vivj

v3
, (11)

in cartesian coordinates. Explicitly, this contribution is best expressed in spherical coordinates
as(

∂fe

∂t

)
i

= niL
e/i

8πv3

[
∇2

θ + µv
∂

∂v

]
fe = niL

e/i

8πv3

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ µv

∂

∂v

]
fe (12)

for fe = fe(v, θ, t), where we have introduced the mass ratio factor µ = 2me/mi and the
Laplace–Beltrami operator ∇2

θ in spherical coordinates for azimuthally independent f . The
term proportional to µ �= 0 plays the role of an almost negligible friction force that only
affects very slow electrons. If we assume infinite massive ions µ = 0, the electron–ion
operator Le/i

FP will only involve angular variables in velocity space, meaning that it only
scatters electron velocity direction. In this case, this differential operator admits a well-known
integral propagator P i

τ = exp
(
τLe/i

FP

)
δ(v − v′) which is valid for any value of time τ. It is

given as a series of Legendre Polynomials Pk(cos θ) by

P i
τ = �e/i(v, t + τ | v′, t) = δ(v − v′)

2πv2

∞∑
k=0

(
k +

1

2

)
Pk(cos θ)Pk(cos θ ′) e−τλk , (13)

with λk = ((k + 1/2)2 − 1/4)niL
e/i/(8πv′3). For a finite mass ratio µ, this expression

should be corrected by solving the Cauchy problem associated with (12) for an initial
distribution δ(v − v′). To do this, it is sufficient to assume the new function P i

τ in the
form

∑
k gk(v, τ )Pk(cos θ) and solve the resulting first-order differential equation for gk .

Through this procedure we have found that P i
τ essentially preserves the standard form of (13)

since it is given by

P i
τ = δ(v − v′ξ 1/3)

2πv2

∞∑
k=0

(
k +

1

2

)
Pk(cos θ)Pk(cos θ ′) e−τλkζ , (14)

where the positive correction factors ξ = 1 + 3µniL
e/iτ/(8πv′3) and ζ = ln ξ/(ξ − 1) satisfy

ξ = ζ = 1 in the limit µ → 0 and (13) is recovered from the most general expression (14).
Observe that this probability transition is valid for any value of τ , as well as it coincides with
the exact propagator � in the limit of the so-called Lorentz plasma, i.e. when Z → ∞ and
electron–electron collisions are neglected [37]. Other effects, as radio-frequency or inverse
bremsstrahlung heating processes in the plasma [28], can be taken into account by including
them as effective diffusion or drift coefficients in either (10) or (14).
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The computation of the series in (14) may involve a large number of terms for small values
of the exponential argument. Then, it would be desirable to accelerate the convergence of the
series by using the approximate and very accurate formula we gave in [34] for the following
standard series with β > 0, after a suitable identification of the terms appearing in (14) or
(13). If we define

Pβ(θ) = eβ

∞∑
k=0

(
k +

1

2

)
e−β(2k+1)2

Pk(cos θ)Pk(cos θ ′) (15)

for small β we have

Pβ(θ) 
 i0(sin θ sin θ ′/2β)

2β(e1/β − 1)
exp

[
1 + cos θ cos θ ′ + sin θ sin θ ′

2β

]
, (16)

where i0 is the same function defined for (3). Although this expression was derived for small
values of β, one can verify that in the limit of large β it approaches the correct asymptotic limit
for the series. In fact, (16) approximates the exact series within an error lower than 5% for
any β > 0. Moreover, in spite of the fact that we have taken a static δ ion distribution function
for fi , if it is approximated by a Maxwellian it would lead to a very similar representation of
the definite integral collisional operator when both species are at comparable temperatures.
Under a computational point of view, the static representation of fi is well behaved and, if
another one were chosen, if it could be depicted as a superposition of Dirac δ functions in the
electron reference frame, leading to an effective propagator P i

τ given as a product of a few
set of propagators of the same form, each one centred in a given point of the velocity space.
For the purposes of this work, the approach given above is enough to compute local transport
coefficients in a similar way to that done in the classical calculation.

Finally, if P e
τ represents the short-time propagator in the form of (10) counting itself

electron–electron collisions and external forces, f e can be advanced in time by using as a
probability transition Pτ = Pτ (v, t + τ ; v′, t) either

Pτ =
∫

P e
τ (v, w)P i

τ (w, v′) dw or Pτ =
∫

P i
τ (v, w′)P e

τ (w′, v′) dw′ (17)

by means of (2) in the velocity space, with ρ = 0 if only collisions and external forces govern
the fe motion. Instead of using this propagator, one can advance fe with P i

τ (or P e
τ ) and apply

the same integral scheme to the resulting function with P e
τ (or P i

τ ), as we showed in [34],
where the advancing process is thoroughly described.

Finally, to get dimensionless magnitudes, we measure the electron speed in units of
its thermal velocity v0 = √

kT0/me, where k is the Boltzmann constant, while we choose
t0 = v3

0

/
(neL

e/e) as a time scale measure. Both parameters define v0t0 as unit length whereas
other scale factors for the thermodynamical forces, E and ∇T , can be derived from these three
parameters.

3. Nonhomogeneous local Fokker–Planck equation

Up to this point we have not still dealt with the inhomogeneous terms that can be added to
the collisional operator in velocity space. Once we define the precise short-time propagator
in velocity space for advancing the homogeneous equation, the question of its use, when an
effective source term is present, can be solved by means of (2), which specializes into the
simple advance scheme given by

fe(v, t + τ) =
∫

[fe(v′, t) + τρ(v′, t)]Pτ (v, v′) dv′. (18)
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In particular, the spatial inhomogeneities effects depicted by the Vlasov term have not been
included in the above scheme. However, the inclusion of this term should pose no problem in
dealing with an appropriate representation as a local approximation in configuration space. As
a first approach to this problem, in [18] we formally replaced this contribution by an effective
source term ρ = ρspt obtained from classical transport calculations followed by Spitzer and
Harm [8]. In this sense, under the perspective of calculating the local transport coefficients,
we obtained the steady state solution of (4), rewritten as

∂fe

∂t
= ρ + C(fe, fe), (19)

with ρ = ρspt being a function of the generalized thermodynamical forces, ∇T = ∂T /∂r and
E, as

ρspt(∇T , E) = f 0
e

(
mv2

2kT
− 5

2

)
v
T

· ∂T

∂r
− f 0

e

e

kT
E · v. (20)

Our solution was compared with that obtained in [8] from the equation ρspt = −C lin where
C lin = C

(
f 0

e , f 1
e

)
is the linearized collisional operator used in this classical calculations.

As usual, in the linearization process the electron distribution function is assumed to have
the form of a perturbed Maxwellian f 0

e as fe = f 0
e (v) + f 1

e (v). The contributions of order(
f 1

e

)2
in C(f, f ) are neglected even if a time advance or an iterative scheme is used to reach

a steady state solution. We have obtained an excellent agreement in computing Spitzer’s
transport coefficients for vanishing small perturbative fields, these results being independent
of any initial function fe(v, 0). The difference between our equation and the Spitzer–Harm
approximation lies in both using the full fe, instead of its first-order linearized form, and
substituting the linearized collisional term by the full nonlinear operator. In particular, from
(20), we had v · ∇T = v‖∂T /∂z and v · E = v‖E, where v‖ means the velocity component
in the direction of the electric field which is also assumed to be directed along the thermal
gradient direction. Note that in the inhomogeneous term ρspt, the temperature gradient factor
is fixed in such a way that the average particle flux of the electrons vanishes in the absence of
an electric field E. Moreover, the electric field is included in its definition, this also assumes
the collisional operator to be independent of both fields. Of course, the conditions under which
transport is defined are, somewhat, arbitrary in the classical approach but our treatment with a
nonlinearized operator suggested the possibility of replacing the so-called Vlasov term in the
local approximation by ρspt, although we had to adjust ourselves to similar physical conditions
in order to obtain the same results. Nevertheless, physical inconsistencies were found in
describing the distribution function that exhibited negative values for high v. These negative
tails in fe appear to be increasing in time, even for very small fields. Yet, it is interesting
to recall that our nonlinearized collisional integral operator tends to correct these unphysical
behaviour, appearing as a consequence of an ill-possed physical problem when ρspt is taken as
a source term.

At a first approach in constructing a new source term, we investigate here the possibility
of dealing with ρ = ρspt(∇T , 0), including the electric field strength into the direct propagator
given in (10). Before we come to analyse our results in transport calculations, let us derive
a set of fluid motion equations describing the role played by ρ in the time evolution of the
distribution moments. To do this, we define the quantity 〈g(v, t)〉 of any function g, depending
explicitly on v and time t, as

〈g〉(t) = 〈g(v, t)〉 =
∫

g(v, t)fe(v, t) dv (21)
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that corresponds to the average of g in velocity space for a distribution fe having ne = 1.
Taking into account a FPE in the form ∂f/∂t = ρ − ∂/∂vi[Di − ∂Dij /∂vj ]f , in the three-
dimensional velocity space, the rate of change in time for 〈g(v, t)〉 is given by

d

dt
〈g〉 = ˙〈g〉 =

〈
∂g

∂t
+ Di

∂g

∂vi

+ Dij

∂2g

∂vi∂vj

〉
+

∫
gρ dv (22)

for a well-behaved distribution function vanishing at infinite [2, 18]. Observe that, in our case,
ρ may contain the Vlasov term, or any formal source term describing spatial inhomogeneities,
and Di = De

i + Fi/me. The values g = 1, g = v and g = mev
2/2 are clearly related to the

number electron density ne, bulk flow velocity u = 〈v〉/ne, or electric current J = −eneu,

and the kinetic temperature 3kT /2 = 〈mev
2/2〉/ne. In the following, we assume that the

rate of change for ne, ṅe = ∫
ρd3v, is zero under an appropriate definition of ρ. Therefore,

the physically relevant quantities evolve in time throughout the motion equations, assuming a
finite mass ratio µ,

˙〈v〉 =
〈

F
me

+ De/i

〉
+

∫
vρ dv =

〈
F
me

〉
−

(
1 +

µ

2

) niL
e/i

4π

〈 v
v3

〉
+

∫
vρ dv (23)

and

1

2
〈v̇2〉 =

〈
v · F

me

〉
− µ

niL
e/i

8π

〈
1

v

〉
+

1

2

∫
v2ρ dv (24)

where we have taken into account that the electron–electron self-collision operator does not
contribute to both momentum and energy exchanges. Observe that if fe is not spatially
homogeneous and we choose the Vlasov term as a possible source, ρ = −(∂/∂r) · vfe, the
above relations provide a set of differential fluid equations.

If ρ = ρspt(∇T , E) we have to take F = 0 in the above fluid motion equations, since the
external force −eE is included in ρ. In this case, once a stationary steady state is reached, all
the time derivatives vanish, so that the relations (for µ = 0)∫

v‖ρ dv = −eEne

me

= neZLe/e

4π

〈v‖
v3

〉
and

1

2

∫
v2ρ dv = 0 (25)

hold for a large evolution time, as it actually happens. Here, use has been made of the relations
Le/i = Z2Le/e and ne = Zni .

As previously remarked, we now test as a possible model for ρ the term ρ = ρspt(∇T , 0),

as defined in (20), by adding the electric field to the drift vector in the Fokker–Planck operator
and solving (19) with the scheme given in (18). As expected, similar inconsistencies as those
found in [18] appear in this case. Besides the development of negative values in fe during the
time advance scheme, we have found that no steady state can be reached in the same cases.
Furthermore, let us stress that from (23) and (24), in the stationary state

−eEne

me

= neZLe/e

4π

〈v‖
v3

〉
and −eE

me

〈v‖〉 = 0 (26)

should be satisfied (if µ = 0), because
∫

v2ρspt(∇T , 0) dv = 0 and E has been added to the
drift term of the collisional FPE operator. The last relation would give 〈v‖〉 = neu‖ = 0 for
t → ∞, which would seem to contradict the coherence of the classical scheme if no thermal
gradient is adjusted to maintain zero current at any time t. This proves that ρ = ρspt(∇T , 0)

would only be valid in the extreme limit of vanishing fields with the previous assumption about
the existence of stationary solution for a linearized collisional operator, which is also assumed
to be independent of the fields. It is important, anyway, to point out this discrepancy, because
our results show a deviation of transport coefficients (in this case, electrical conductivity in
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the absence of a thermal gradient) when the electric field starts to be high. In fact, exact
coincidence with the Spitzer–Harm’s result is only present for very weak fields, when the
external force is properly included in the advance scheme as a part of the convective terms
involved in the Fokker–Planck operator.

The previous analysis about using ρspt(∇T , 0) as a way to locally model the Vlasov term
has shown the incoherence of such an election. Note also, that in the transient state (with
ṅe = 0) we have 1/2〈v̇2〉 = −eE/me〈v‖〉, which explains the progressive increase of the
system energy observed in our results for a finite electric field. For these reasons we are forced
to seek for a new model for the term ρ.

4. A model for local transport coefficients calculus

The inconsistency of ρspt in describing local spatial inhomogeneities can be avoided by
replacing it with a correct flux particle balance at a given point (small volume) in the space.
Therefore, in this section we propose a new model of the inhomogeneous term ρ inspired in the
previous interpretation of ρspt. This approach would also give rise to a method to deal with the
Vlasov operator for local transport computation purposes. Our task now is to provide a model
to compute transport coefficients, not only for very small fields and temperature gradients,
but also for large departures from the equilibrium. Besides this task, we want to provide
a time evolution for these coefficients, as well. At the same time, our aim is to describe a
time-dependent physically coherent distribution function. For the sake of clarity, the transport
coefficients are presented in units of the corresponding Spitzer–Harm results, and the same
notation as used in [8] is preserved, that is

J = σE + α∇T , Q = −βE − κ∇T (27)

for the electric current J and the total heat flux Q , both computed in the reference system at
rest with the ions.

Let us recall that a basic assumption in the classical theory is the existence of a local
gradient of temperature and/or a local electric field at some point of space . Obviously, in fact,
this is an idealization. Unless we are able to precisely describe how such gradients or fields are
created, it makes little physical sense to postulate their existence. Our physical argument for
constructing the source term is to prescribe the conditions under which either a temperature
gradient or an electric field comes about. The way to achieve this is to define appropriate
boundary conditions for the region of interest.

This procedure has been followed by other authors who studied the same problem in the
past (see e.g. [30] and [31]). Once the gradients and fields exist, we must define our new
source term ρ in such a way that it complies with the same physical conditions implicit in the
analytical structure of ρspt. When this is achieved, it will be seen that our approach in transport
calculations must coincide (except for small numerical errors) with those of the classical
theory for very small gradients and fields. It is expected that only when the perturbations are
significant do the results clearly deviate from the classical ones.

We will choose our usual reference frame in which the symmetry axis z in configuration
space coincides with the v‖ direction and, on the other hand, the thermal gradient and electric
field are both directed along this same direction. Therefore, the space region in which transport
is being analysed is a cylindrical slab of a certain width �Z, comprised between two planes
taken as to be orthogonal to the symmetry axis. The existence of gradients, besides the forces
in the region will be ensured if adequate boundary conditions are postulated on the left and
right sides of the region of interest.
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Such described geometry provides a straightforward expression for the v · ∂fe/∂r term in
the equation for ∂fe/∂t , describing the density current change at the physical point of interest.
This Vlasov term, as the divergence of a vector, can be understood as the flux of vfe on
the surface S of a small volume element V (P ) in configuration space, in the limit in which
this volume reduces itself to a point P,∇ · vfe = limV (p)→0

∫
S

v · dSfe/V (P ). We choose
to substitute such an idealized mathematical situation by a realistic small size slab region in
contact with right (r) and left (l) boundary regions.

It is well known from other physical situations, as in electrostatics or fluid mechanics,
that the corresponding boundary conditions may be regarded as a source distribution at the
boundary surface enclosing a given volume. Clearly, in our slab region case, the −v · ∂fe/∂r
term must be substituted by an effective local source term in the form

ρ = ρ(fe, v) = ��

�Z
= �l − �r

�Z
, (28)

where � is a particle flux per unit area. Both fluxes �l,r , are defined as �l = v+
‖ (fl −fe),�r =

v−
‖ (fe − fr) which corresponds to a particle balance through the left and right surfaces at

z = ∓�Z/2. The electron distribution functions on left and right sides are fl and fr , whereas
v±

‖ = (v‖ ± |v‖|)/2. Obviously, we have assumed fe anisotropized in the direction of the z

axis, parallel to both driving forces E and ∇T , but a generalized ρ to any volume element, with
a unit outward normal vector n, can be obtained by a straightforward derivation. The influence
of collisions and external forces on the system has already been evaluated through (17),
besides (14) and (10). The time advance scheme is then provided by the simple relation (18)
thanks to the short-time propagator Pτ adequate to the geometry implied in the definition of
our formal source term ρ. In this sense, it must be stressed that our nonlinear collisional
operator depends on the generalized thermodynamical forces at any time of the evolution,
because the electron–electron drift and diffusion coefficients are computed at each time step.

For the purpose of obtaining the local transport coefficients, we must be sure that the same
physical conditions are held here, as in the classical calculation. These conditions are reduced
in practice to the requirement that the particle flux is not ‘re-normalized’ in the perturbed
system, as compared with the zero-order unperturbed Maxwellian.

In the dynamic solution of our equation (4), with the Vlasov term replaced by ρ, we
must accordingly ensure that the final electron flux corresponding to the stationary function
fe(v, t → ∞) also coincides with the initial electron flux. This is achieved if we advance
the equation adjusting the densities at the left and right border regions at each time step, in
such a way that both fluxes are equal and no density gradient is present. To measure transport,
we have to maintain the temperatures of both boundaries constant, so that, the temperature
gradient is fixed. We will, therefore, determine the left and right sides densities nl, nr from
the simple flux balance conditions∫

�l dv =
∫

�r dv and
∫

v‖�l dv =
∫

v‖�r dv (29)

assuming fl,r to be Maxwellian distribution functions with zero mean velocity and with
temperatures Tl,r = T ± �T/2, as a first approach to test our model for ρ in this study.
The central region is described by the function fe at temperature T and density ne. These
conditions ensure electron density conservation in time, since they eliminate the contribution
of ρ to the momentum rate of change (23), as it happens in Spitzer’s calculations. However, the
above relations do not drop the contribution of ρ in the energy transfer per unit of time in (24).
Therefore, once a steady state is reached, we have that the time variation of the energy vanishes,
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giving ∫
1

2
v2ρ dv = eE

me

〈v‖〉 + µ
niL

e/i

8π

〈
1

v

〉
≈ eE

me

〈v‖〉. (30)

This result eliminates the incoherence of (26) if ρspt(∇T , 0) is taken as a source of spatial
inhomogeneities. If our source term is expanded up to first order in the temperature increment
�T = Tr − Tl, we find that ��/�Z and ρspt(∇T , 0)/|∇T |[(nrTr − nlTl)/(ne�Z)] only
differ in a remainder of order |�T |3 in the first time step, when the evolution starts from
Maxwellian distributions. This shows that for the first time step and small temperature
gradients our convective term ρ approximates ρspt(∇T , 0), when the numerical parameters are
appropriately determined. In our case, neglecting the small difference between the adjusted
densities, we may consider the last expression in the bracket as our effective temperature
gradient. Thus, if we measure the Spitzer gradient using as unit length the mean electron–ion
collision length lei, we may write �Z = leiNC , where NC stands for the number of mean
collision lengths corresponding to our slab width �Z. For the rest of the time steps, it is, of
course, not possible to provide convenient analytical expressions as those above. In fact, our
present convective term is not constant but evolving in time. At the steady state, however, it
will probably differ little from the classical polynomial approximation. But its merit lies on
the fact that it keeps the basic prescription of no flux renormalization, and does not induce
unphysical negative amplitudes of fe for large absolute values of v. It should also be mentioned
that the requirement of no density and flux renormalization does not force the system during
its time evolution to have constant energy.

5. Evolution of transport coefficients and main results

As a first test of our effective source term added to the nonlinearized collisional FPE, we solve
the problem of a Lorentz plasma (high Z limit) by eliminating the contribution of electron
self-collisions Ce/e in the advance scheme. In this test, we have found an almost exact
coincidence with the transport coefficients given in [8] and other works for very weak fields.
Therefore, for this kind of idealized plasma, no new results are found, in the sense that this
system experiences the same qualitative behaviour we find for the more realistic case dealing
with the electron collisional effects. Our results are summarized as follows.

In figure 1, the first row shows the time evolution of the current J (a) and heat flux Q (b) in
the particular case in which an external field is introduced, having the same dimensionless size
as the temperature gradient. The resulting current and heat flux are normalized at any time t
since they are divided by the corresponding current and heat flux in Spitzer’s calculation
for the identical cases. In these plots, we see that lower fields than the dimensionless
E = −|∇T | = 10−5 = −grad T are necessary for an exact coincidence with Spitzer’s
results. For a real plasma with ne = 1020 m−3 at T = 1 KeV, a dimensionless field of order
E ∼ 2 × 10−3 corresponds to a field of order 1 V m−1 . As in [30] and [31], we find that
our solution approaches the classical results when a large number of mean collision lengths
(NC � 102) are used in defining the spatial scale �Z. In these cases, for very small fields
and gradients, the asymptotic values approaching unity corresponds respectively to the values
(σ − α) and (β − κ) computed with Spitzer’s distribution function fspt.

It can be seen that for increasing fields, both fluxes, J and Q, are reduced up to a 20% with
respect to the ideal ‘zero fields’ limit. The role played by the high velocity electron population
is substantive in these results. Observe that our fe remain positive at any time (frames f and
g), while fspt (frame h) develops considerably large negative amplitudes in the distribution
tails. These negative tails increase as the temperature gradient scale becomes comparable to
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Figure 1. Time evolution of the electric current J and the heat flux Q for different values of
dimensionless temperature gradient grad T and electric field (a), (b). The dependence of both
fluxes on grad T is shown in (c) and (d). The electron distribution function profiles in the steady
state are plot in (e), (f ) and (g), while (h) shows the contour of the Spitzer’s distribution having
negative amplitudes.

the collision length of the electrons having velocities of order 5v0/2, or higher. Our fe is also
anisotropic in the direction of the z axis, remaining close to the Maxwellian distributions fl,r

at the boundaries of our slab region, but differing substantially from a Maxwellian function
when ∇T and E are large. Similar departures from the classical transport coefficients are
found if fl,r are taken as anisotropic distributions. The nonlinear relation between fluxes and
∇T is clearly depicted by the graphs plotted in the second row of the figure. The first two
frames (c, d) describe the dependence on the current and heat flux (in logarithmic scale) with
the temperature gradient, in absence of electric fields, giving α and κ . Note that the unit values
(Spitzer’s coefficients) are approached for extremely small gradients.

Finally, to end this study, let us underline the generality of our procedure. We have
adjusted our calculation to the precise physical conditions leading to the definition of the
classical transport coefficients. Yet, a wealth of physical problems requiring very different
conditions in their time evolution can also be addressed, both for their transient and final
stationary solutions. With this model the extraordinary complexity introduced in transport
computation by a magnetic field can be simplified by a suitable redefinition of our term ρ. In
this case, the flux particle balance must be evaluated on the surfaces of a small space volume,
with each outward normal unit vectors in the parallel and orthogonal directions to the field.
The resulting scalar term ρ(fe, v) can be manageable under change of variables in velocity
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space, if needed. The efficiency and robustness of our integral collisional operator makes
it quite realistic to study the interaction of several space regions, in which the distribution
functions are defined and external boundary conditions close the system. These topics will be
the object of a future research.
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